Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasitology ; 150(10): 939-949, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37565486

RESUMO

Perkinsus olseni is an industrially significant protozoan parasite of Manila clam, Ruditapes philippinarum. So far, various media, based on Dulbecco's Modified Eagle Medium and Ham's F-12 nutrient mixture with supplementation of fetal bovine serum (FBS), have been developed to proliferate the parasitizing trophozoite stage of P. olseni. The present study showed that P. olseni did not proliferate in FBS-deficient Perkinsus broth medium (PBMΔF), but proliferated well in PBMΔF supplemented with tissue extract of host Manila clams, indicating that FBS and Manila clam tissue contained molecule(s) required for P. olseni proliferation. Preliminary characterization suggested that the host-derived molecule(s) was a heat-stable molecule(s) with a molecular weight of less than 3 kDa, and finally a single molecule required for the proliferation was purified by high-performance liquid chromatography processes. High-resolution electrospray ionization mass spectrometry and nuclear magnetic resonance analyses identified this molecule as glycine betaine (=trimethylglycine), and the requirement of this molecule for P. olsseni proliferation was confirmed by an assay using chemically synthesized, standard glycine betaine. Although glycine betaine was required for the proliferation of all examined Perkinsus species, supplementation of glycine betaine precursors, such as choline and betaine aldehyde, enhanced the proliferation of 4 Perkinsus species (P. marinus, P. chesapeaki, P. mediterraneus and P. honshuensis), but not of 2 others (P. olseni and P. beihaiensis). Thus, it was concluded that the ability to biosynthesise glycine betaine from its precursors varied among Perkinsus species, and that P. olseni and P. beihaiensis lack the ability required to biosynthesize glycine betaine for proliferation.


Assuntos
Alveolados , Bivalves , Parasitos , Animais , Betaína/farmacologia , Bivalves/parasitologia , Trofozoítos , Proliferação de Células
2.
Appl Microbiol Biotechnol ; 106(11): 4169-4185, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35595930

RESUMO

Fungi are a rich source of secondary metabolites with potent biological activities. Co-culturing a fungus with another microorganism has drawn much attention as a practical method for stimulating fungal secondary metabolism. However, in most cases, the molecular mechanisms underlying the activation of secondary metabolite production in co-culture are poorly understood. To elucidate such a mechanism, in this study, we established a model fungal-fungal co-culture system, composed of Aspergillus nidulans and Aspergillus fumigatus. In the co-culture of A. nidulans and A. fumigatus, production of antibacterial diphenyl ethers was enhanced. Transcriptome analysis by RNA-sequencing showed that the co-culture activated expression of siderophore biosynthesis genes in A. fumigatus and two polyketide biosynthetic gene clusters (the ors and cic clusters) in A. nidulans. Gene disruption experiments revealed that the ors cluster is responsible for diphenyl ether production in the co-culture. Interestingly, the ors cluster was previously reported to be upregulated by co-culture of A. nidulans with the bacterium Streptomyces rapamycinicus; orsellinic acid was the main product of the cluster in that co-culture. In other words, the main product of the ors cluster was different in fungal-fungal and bacterial-fungal co-culture. The genes responsible for biosynthesis of the bacterial- and fungal-induced polyketides were deduced using a heterologous expression system in Aspergillus oryzae. The molecular genetic mechanisms that trigger biosynthesis of two different types of compounds in A. nidulans in response to the fungus and the bacterium were demonstrated, which provides an insight into complex secondary metabolic response of fungi to microorganisms. KEY POINTS: • Co-culture of two fungal species triggered antibiotic diphenyl ether production. • The co-culture affected expression levels of several genes for secondary metabolism. • Gene cluster essential for induction of the antibiotics production was determined.


Assuntos
Aspergillus nidulans , Policetídeos , Antibacterianos/metabolismo , Aspergillus fumigatus/genética , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Técnicas de Cocultura , Regulação Fúngica da Expressão Gênica , Família Multigênica , Éteres Fenílicos/metabolismo , Policetídeos/metabolismo
3.
Angew Chem Int Ed Engl ; 60(16): 8792-8797, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33533101

RESUMO

A revised structure of natural 14-mer cyclic depsipeptide MA026, isolated from Pseudomonas sp. RtlB026 in 2002 was established by physicochemical analysis with HPLC, MS/MS, and NMR and confirmed by total solid-phase synthesis. The revised structure differs from that previously reported in that two amino acid residues, assigned in error, have been replaced. Synthesized MA026 with the revised structure showed a tight junction (TJ) opening activity like that of the natural one in a cell-based TJ opening assay. Bioinformatic analysis of the putative MA026 biosynthetic gene cluster (BGC) of RtIB026 demonstrated that the stereochemistry of each amino acid residue in the revised structure can be reasonably explained. Phylogenetic analysis with xantholysin BGC indicates an exceptionally high homology (ca. 90 %) between xantholysin and MA026. The TJ opening activity of MA026 when binding to claudin-1 is a key to new avenues for transdermal administration of large hydrophilic biologics.


Assuntos
Produtos Biológicos/metabolismo , Depsipeptídeos/biossíntese , Família Multigênica , Pseudomonas/genética , Produtos Biológicos/química , Depsipeptídeos/química , Depsipeptídeos/genética , Conformação Molecular
4.
Front Fungal Biol ; 2: 656751, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37744138

RESUMO

Filamentous fungi produce various bioactive compounds that are biosynthesized by sets of proteins encoded in biosynthesis gene clusters (BGCs). For an unknown reason, many BGCs are transcriptionally silent in laboratory conditions, which has hampered the discovery of novel fungal compounds. The transcriptional reactiveness of fungal secondary metabolism is not fully understood. To gain the comprehensive view, we conducted comparative genomic and transcriptomic analyses of nine closely-related species of Aspergillus section Fumigati (A. fumigatus, A. fumigatiaffinis, A. novofumigatus, A. thermomutatus, A. viridinutans, A. pseudoviridinutans, A. lentulus, A. udagawae, and Neosartorya fischeri). For expanding our knowledge, we newly sequenced genomes of A. viridinutans and A. pseudoviridinutans, and reassembled and reannotated the previously released genomes of A. lentulus and A. udagawae. Between 34 and 84 secondary metabolite (SM) backbone genes were identified in the genomes of these nine respective species, with 8.7-51.2% being unique to the species. A total of 247 SM backbone gene types were identified in the nine fungi. Ten BGCs are shared by all nine species. Transcriptomic analysis using A. fumigatus, A. lentulus, A. udagawae, A. viridinutans, and N. fischeri was conducted to compare expression levels of all SM backbone genes in four different culture conditions; 32-83% of SM backbone genes in these species were not expressed in the tested conditions, which reconfirmed that large part of fungal SM genes are hard to be expressed. The species-unique SM genes of the five species were expressed with lower frequency (18.8% in total) than the SM genes that are conserved in all five species (56%). These results suggest that the expression tendency of BGCs is correlated with their interspecies distribution pattern. Our findings increase understanding of the evolutionary processes associated with the regulation of fungal secondary metabolism.

5.
Life Sci Alliance ; 3(12)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32962971

RESUMO

Exclusivity in physical spaces and nutrients is a prerequisite for survival of organisms, but a few species have been able to develop mutually beneficial strategies that allow them to co-habit. Here, we discovered a mutualistic mechanism between filamentous fungus, Aspergillus nidulans, and bacterium, Bacillus subtilis The bacterial cells co-cultured with the fungus traveled along mycelia using their flagella and dispersed farther with the expansion of fungal colony, indicating that the fungal mycelia supply space for bacteria to migrate, disperse, and proliferate. Transcriptomic, genetic, molecular mass, and imaging analyses demonstrated that the bacteria reached the mycelial edge and supplied thiamine to the growing hyphae, which led to a promotion of hyphal growth. The thiamine transfer from bacteria to the thiamine non-auxotrophic fungus was directly demonstrated by stable isotope labeling. The simultaneous spatial and metabolic interactions demonstrated in this study reveal a mutualism that facilitates the communicating fungal and bacterial species to obtain an environmental niche and nutrient, respectively.


Assuntos
Aspergillus nidulans/metabolismo , Bacillus subtilis/metabolismo , Micélio/metabolismo , Flagelos , Hifas , Nutrientes , Microbiologia do Solo , Simbiose/fisiologia , Tiamina/metabolismo
6.
Front Microbiol ; 11: 1641, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765467

RESUMO

Fungi are a rich source of natural products with biological activities. In this study, we evaluated viral effects on secondary metabolism of the rice blast fungus Magnaporthe oryzae using an isolate of APU10-199A co-infected with three types of mycoviruses: a totivirus, a chrysovirus, and a partitivirus. Comparison of the secondary metabolite profile of APU10-199A with that of the strain lacking the totivirus and chrysovirus showed that a mycotoxin tenuazonic (TeA) acid was produced in a manner dependent on the mycoviruses. Virus reinfection experiments verified that TeA production was dependent on the totivirus. Quantitative reverse transcription PCR and RNA-sequencing analysis indicated the regulatory mechanism underlying viral induction of TeA: the totivirus activates the TeA synthetase gene TAS1 by upregulating the transcription of the gene encoding a Zn(II)2-Cys6-type transcription factor, TAS2. To our knowledge, this is the first report that confirmed mycovirus-associated regulation of secondary metabolism at a transcriptional level by viral reinfection. Because only treatment with dimethyl sulfoxide has been reported to trigger TeA production in this fungus without gene manipulation, our finding highlights the potential of mycoviruses as an epigenomic regulator of fungal secondary metabolism.

7.
Front Microbiol ; 11: 607795, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424809

RESUMO

The filamentous fungal pathogen Aspergillus fumigatus is one of the most common causal agents of invasive fungal infection in humans; the infection is associated with an alarmingly high mortality rate. In this study, we investigated whether a mycovirus, named AfuPmV-1M, can reduce the virulence of A. fumigatus in a mouse infection model. AfuPmV-1M has high sequence similarity to AfuPmV-1, one of the polymycovirus that is a capsidless four-segment double-stranded RNA (dsRNA) virus, previously isolated from the genome reference strain of A. fumigatus, Af293. However, we found the isolate had an additional fifth dsRNA segment, referred to as open reading frame 5 (ORF5), which has not been reported in AfuPmV-1. We then established isogenic lines of virus-infected and virus-free A. fumigatus strains. Mycovirus infection had apparent influences on fungal phenotypes, with the virus-infected strain producing a reduced mycelial mass and reduced conidial number in comparison with these features of the virus-free strain. Also, resting conidia of the infected strain showed reduced adherence to pulmonary epithelial cells and reduced tolerance to macrophage phagocytosis. In an immunosuppressed mouse infection model, the virus-infected strain showed reduced mortality in comparison with mortality due to the virus-free strain. RNA sequencing and high-performance liquid chromatography (HPLC) analysis showed that the virus suppressed the expression of genes for gliotoxin synthesis and its production at the mycelial stage. Conversely, the virus enhanced gene expression and biosynthesis of fumagillin. Viral RNA expression was enhanced during conidial maturation, conidial germination, and the mycelial stage. We presume that the RNA or translation products of the virus affected fungal phenotypes, including spore formation and toxin synthesis. To identify the mycovirus genes responsible for attenuation of fungal virulence, each viral ORF was ectopically expressed in the virus-free KU strain. We found that the expression of ORF2 and ORF5 reduced fungal virulence in the mouse model. In addition, ORF3 affected the stress tolerance of host A. fumigatus in culture. We hypothesize that the respective viral genes work cooperatively to suppress the pathogenicity of the fungal host.

8.
Chem Pharm Bull (Tokyo) ; 67(5): 476-480, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31061373

RESUMO

Surugamides are a group of non-ribosomal peptides isolated from marine-derived Streptomyces. Surugamide A (1) and its closely related derivatives, surugamides B-E (2-5), are D-amino acid containing cyclic octapeptides with cathepsin B inhibitory activity. The D-isoleucine (Ile), the nonproteinogenic amino acid residue embedded in 1, is less common in natural peptides because a rare Cß-epimerization is required for its biosynthesis. Taking advantage of the synthetic route of 2 previously established by our group, we synthesized the cyclic octapeptide 1 containing D-Ile by solid phase peptide synthesis. The structure of 1 actually contains D-allo-Ile in place of D-Ile, which was corroborated by chemical syntheses and chromatographic comparisons.


Assuntos
Isoleucina/química , Peptídeos Cíclicos/química , Streptomyces/química , Sequência de Aminoácidos , Isoleucina/síntese química , Peptídeos Cíclicos/síntese química , Conformação Proteica , Técnicas de Síntese em Fase Sólida , Estereoisomerismo
9.
Chem Pharm Bull (Tokyo) ; 66(6): 637-641, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29863066

RESUMO

Surugamide F is a linear decapeptide (1) isolated along with the cyclic octapeptides surugamides A-E (2-6), from a marine-derived Streptomyces species. The linear peptide 1 is produced by two nonribosomal peptide synthetases (NRPSs) encoded in adjacent open reading frames, which are further flanked by an additional pair of NRPS genes responsible for the biosyntheses of the cyclic peptides 2-6. While the cyclic peptides 2-6 were identified to be cathepsin B inhibitors, the biological activity of the new metabolite 1 still remained unclear. In order to elucidate its unique biosynthetic pathway and biological activity in detail, we planned to develop an efficient synthetic route toward 1. Here we report the diastereoselective total synthesis of 1, utilizing 9-fluorenylmethyloxycarbonyl (Fmoc)-based solid-phase peptide synthesis. During this study, we found that the structural correction of 1 was required, due to the mislabeling of the commercially obtained 3-amino-2-methylpropionic acid, and the true structure of 1 was corroborated by the chemical synthesis and chromatographic comparison.


Assuntos
Oligopeptídeos/química , Streptomyces/química , Conformação Molecular , Oligopeptídeos/síntese química , Estereoisomerismo
10.
Angew Chem Int Ed Engl ; 57(30): 9447-9451, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29808953

RESUMO

The cathepsin B inhibitor surugamide B (2), along with structurally related derivatives (A and C-E), has previously been isolated from the marine actinomycete Streptomyces sp. JAMM992. The biosynthetic genes are unexpectedly part of a cluster of four non-ribosomal peptide synthetase (NRPS) genes, two of which are responsible for the biosynthesis of the additional linear decapeptide surugamide F. However, the thioesterase domain required for the later stage of the biosynthesis of the cyclic peptides surugamides A-E is not present in any module architecture of the surugamide NRPSs. Herein, we report the first total synthesis of surugamide B (2) through the macrocyclization at the biomimetic position, which not only alleviated the Cα epimerization in the macrolactamization process, but also efficiently provided 2 in 34 % yield for 18 steps. Furthermore, both the chemical and enzymatic studies with the biosynthetic precursor mimics revealed that the stand-alone enzyme SurE, which belongs to the penicillin-binding protein family, is responsible for macrocyclization of the tethered octapeptidyl intermediate.


Assuntos
Adenilil Ciclases/química , Compostos Macrocíclicos/síntese química , Adenilil Ciclases/metabolismo , Compostos Macrocíclicos/química , Compostos Macrocíclicos/metabolismo , Conformação Molecular
12.
Nat Chem Biol ; 13(1): 30-37, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27820803

RESUMO

Peptidic natural products (PNPs) are widely used compounds that include many antibiotics and a variety of other bioactive peptides. Although recent breakthroughs in PNP discovery raised the challenge of developing new algorithms for their analysis, identification of PNPs via database search of tandem mass spectra remains an open problem. To address this problem, natural product researchers use dereplication strategies that identify known PNPs and lead to the discovery of new ones, even in cases when the reference spectra are not present in existing spectral libraries. DEREPLICATOR is a new dereplication algorithm that enables high-throughput PNP identification and that is compatible with large-scale mass-spectrometry-based screening platforms for natural product discovery. After searching nearly one hundred million tandem mass spectra in the Global Natural Products Social (GNPS) molecular networking infrastructure, DEREPLICATOR identified an order of magnitude more PNPs (and their new variants) than any previous dereplication efforts.


Assuntos
Algoritmos , Produtos Biológicos/análise , Bases de Dados de Compostos Químicos , Descoberta de Drogas/métodos , Peptídeos/análise , Espectrometria de Massas em Tandem
13.
Chembiochem ; 17(18): 1709-12, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27443244

RESUMO

Genome mining is a powerful method for finding novel secondary metabolites. In our study on the biosynthetic gene cluster for the cyclic octapeptides surugamides A-E (inhibitors of cathepsin B), we found a putative gene cluster consisting of four successive non-ribosomal peptide synthetase (NRPS) genes, surA, surB, surC, and surD. Prediction of amino acid sequence based on the NRPSs and gene inactivation revealed that surugamides A-E are produced by two NRPS genes, surA and surD, which were separated by two NRPS genes, surB and surC. The latter genes are responsible for the biosynthesis of an unrelated peptide, surugamide F. The pattern of intercalation observed in the sur genes is unprecedented. The structure of surugamide F, a linear decapeptide containing one 3-amino-2-methylpropionic acid (AMPA) residue, was determined by spectroscopic methods and was confirmed by solid-phase peptide synthesis.


Assuntos
Genes Bacterianos/genética , Família Multigênica/genética , Peptídeos Cíclicos/biossíntese , Streptomyces/genética , Conformação Molecular , Peptídeos Cíclicos/química , Streptomyces/enzimologia
14.
J Org Chem ; 78(13): 6746-50, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23745669

RESUMO

Surugamides A-E (1-5), cyclic octapeptides with four D-amino acid residues, were isolated from the broth of marine-derived Streptomyces sp. Their planar structures were determined by analyses of spectroscopic data, and the absolute configuration of constituent amino acid residues was determined by the Marfey's method. Differentiation of D-Ile and L-Ile in the sequence was established by chiral analysis of fragment peptides obtained from the partial hydrolysate, whose identification was conducted by LC-MS/MS.


Assuntos
Aminoácidos/química , Peptídeos Cíclicos/isolamento & purificação , Streptomyces/química , Cromatografia Líquida , Hidrólise , Conformação Molecular , Peptídeos Cíclicos/química , Estereoisomerismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...